When getting a 3D printer for your company, you need to consider numerous factors, from its materials, size, and consumables to its speed and software. After all, for a small company, it can be a big investment, so aim for the most flexible device you can get in terms of size, speed and variety of materials.
Here are the criteria that lead to making a best pick for your small business.
Industrial 3D Printer Features
Look for a range of features that can help maximize the printer's time being used and speed set up of new print runs. Remember, the more the 3D printer is used, the less it costs per item to make.
-
Connections: Industrial 3D printers typically have a wired networking connection that's often augmented by the ability to use Wi-Fi. Many also have a USB port for using a flash drive that contains the printer instructions.
-
Raw material control: Some printers make you pour the material into a hopper or thread a filament, while others package it in a cartridge for quick, clean changes. Before buying, do some calculations to estimate what the typical parts you make will cost.
-
Color: The raw materials for some 3D printers are available in a variety of colors, including neon shades and some that glow in the dark. Some makers even have custom mixing kits.
-
Touchscreen control: Look for printers that have a touchscreen for setup, configuration and for customizing the building process.
-
Stands: The smaller 3D printers can sit on a table or shelf, but they often have cabinets or stands available that can store maintenance products and the raw materials you'll need.
-
Build plate: Everything a 3D printer builds happens on a secure and level stage. It's a good idea to buy several spares so as soon as the build is done, it can be pulled out and the next job started with an alternate tray.
-
Monitoring: Most 3D printers have web cams built in to remotely watch its progress from the other side of the factory or globe. Others have a laser inspection process that scans the item as it's created looking for flaws or problems.
-
Extruders: This is the actual printing nozzle. You'll want more than one on hand because they can clog up and shut the machine down.
Materials
Letting the material fit the use is the best way to pick the printer. After all, you wouldn't want a brittle plastic used for a race car's engine cam, nor would you spend a fortune to make a titanium gear for a food mixer.
By far, plastics – nylon, polyactic acid, methacrylates and acrylonitrile butadiene styrene – are the most popular materials for 3D printing, and are generally inexpensive. Many 3D printer makers have enhanced these basic materials to be stronger. In fact, there are PLA materials that are as strong as ABS.
Many of the newer printers can work with ceramics and metals, including steel, bronze and gold. Some use formerly exotic materials, like carbon fiber and Kevlar.
Size
After you've chosen the technology and the material, you'll need to select a size. Be careful, because as the 3D printing machinery grows, it can get exponentially more expensive. For instance, a small and simple extrusion machine capable of making things that are at most five inches long might cost about $1,000. If you want to double that to 10 inches, the cost could jump to between $7,000 and $20,000. How about items that are up to five feet long? It'll cost you roughly $250,000.
You'll also want to keep printer assembly in mind. Some can have an Ikea-like, build-it-yourself quality, so you'll want to be sure you have the manpower and know-how to set up a bigger machine. They sometimes require higher-voltage electrical service, ventilation and access to a steady supply of an inert gas.
Resolution
While 3D printers vary, each device is capable of a specified resolution. This roughly corresponds with the smallest feature that can reliably be made by the material and machine. A simple extrusion printer might have a resolution of about 100 to 150 microns, which is fine for most uses: A micron is one millionth of a meter, 0.001mm or about 0.00004 inch.
Need more exacting designs? The resolution can be more exacting, with the ability to create items with a tolerance of 75 or 50 microns, or roughly the thickness of a human hair. Some stereolithography-based printers can build details as small as 16 microns – slightly larger than a grain of pollen.
Finally, there's a new generation of 3D printers that can create items that go as low as a micron or 1/2,000th of the width of a human hair. Today, these are specialty machines that might be used for precise impeller blades or micro-optics, but they may soon be used to make prosthetic devices and microscopic machinery.
Software
Whether it's a prototype light switch or a jet part, every 3D model starts at the screen of a computer-aided design (CAD) workstation. Once it's ready, you'll need to use the printer's software to digitally slice it into the layers that the machine will build.
Generally, the final prebuild step is a preview with all the parameters listed. If all looks good, the program adds supports to prevent sagging, and renders large solid regions as honeycomb structures that are lighter and use less material. With the machine's build file ready, all you do is press the Start button.
Although you can use the included software to prep the file, there are alternatives. In addition to cloud-based apps that work via a web browser, there are several generic 3D printer preparation apps programs such as Materialise, Slicr and Octoprint. A single program can work with several 3D printers.
Performance and Speed
When it comes to 3D printing, speed is important but not crucial. A faster printer obviously lets you move on to another item quickly. On the other hand, a slow but large printer lets you create several items on a single stage at once.
While an industrial stereolithographic system might push 15 mm of building per second, an extruder might be closer to 100 or 150 mm/sec. This translates into it taking an hour with the former, or a few minutes with the latter. The typical three-inch wide gear might be producible in about 10 minutes, while a complex model of a patient's heart prior to surgery might require a full day or more.
Resources, Contracts and Customer Service
Because 3D printers are expensive and potentially finnicky machines, there is an art to getting them to do your bidding. The bigger manufacturers have a slew of online resources that go beyond simple manuals and setup instructions. The best companies have training videos and white papers on how to best utilize the machinery, and offer troubleshooting help.
On the downside, even some market leaders don't provide 24/7 support. Most limit it to business hours in the U.S., which can be bad for companies that need to run at night or those in far-away time zones.
They typically include a one-year warranty and support, although some limit this to a scant six months and charge for software upgrades. Look for a company that provides assistance setting up and using the printer but also provides documentation and online help.
It's a good idea to extend coverage with a service contract that covers repairs and support. It just might keep a major failure from shutting your company down.